☐ In Exercise 55 you are asked to prove analytically what we have discovered from the graphs in Figure 18.

SOLUTION Figure 18 shows computer-drawn graphs for various values of c. For c>1 there is a loop that decreases in size as c decreases. When c=1 the loop disappears and the curve becomes the cardioid that we sketched in Example 7. For c between 1 and $\frac{1}{2}$ the cardioid's cusp is smoothed out and becomes a "dimple." When c decreases from $\frac{1}{2}$ to 0, the limaçon is shaped like an oval. This oval becomes more circular as $c \to 0$, and when c=0 the curve is just the circle c=1.

FIGURE 18 Members of the family of limaçons $r = 1 + c \sin \theta$

The remaining parts of Figure 18 show that as c becomes negative, the shapes change in reverse order. In fact, these curves are reflections about the horizontal axis of the corresponding curves with positive c.

Exercises

1–2 \Box Plot the point whose polar coordinates are given. Then find two other pairs of polar coordinates of this point, one with r>0 and one with r<0.

- **1.** (a) $(1, \pi/2)$
- (b) $(-2, \pi/4)$
 - (c) (3, 2)

- **2.** (a) (3, 0)
- (b) $(2, -\pi/7)$
- (c) $(-1, -\pi/2)$

 $3-4 \supset Plot$ the point whose polar coordinates are given. Then find the Cartesian coordinates of the point.

- **3**. (a) $(3, \pi/2)$
- (b) $(2\sqrt{2}, 3\pi/4)$
- (c) $(-1, \pi/3)$

- 4. (a) $(2, 2\pi/3)$
- (b) $(4, 3\pi)$
- (c) $(-2, -5\pi/6)$

5-6 □ The Cartesian coordinates of a point are given.

- (i) Find polar coordinates (r, θ) of the point, where r > 0 and $0 \le \theta < 2\pi$.
- (ii) Find polar coordinates (r, θ) of the point, where r < 0 and $0 \le \theta < 2\pi$.
- **5.** (a) (1, 1)
- (b) $(2\sqrt{3}, -2)$
- **6.** (a) $(-1, -\sqrt{3})$
- (b) (-2, 3)

7–12 □ Sketch the region in the plane consisting of points whose polar coordinates satisfy the given conditions.

$$\sqrt{7.}$$
 $r >$

8.
$$0 \le \theta < \pi/4$$

- **9.** $0 \le r \le 2$, $\pi/2 \le \theta \le \pi$
- **10.** $1 \le r < 3$, $-\pi/4 \le \theta \le \pi/4$
- (11) 2 < r < 3, $5\pi/3 \le \theta \le 7\pi/3$
- **12.** $-1 \le r \le 1$, $\pi/4 \le \theta \le 3\pi/4$
- **13.** Find the distance between the points with polar coordinates $(1, \pi/6)$ and $(3, 3\pi/4)$.
- **14.** Find a formula for the distance between the points with polar coordinates (r_1, θ_1) and (r_2, θ_2) .

15–20 \Box Find a Cartesian equation for the curve described by the given polar equation.

$$(15.) r = 2$$

16.
$$r \cos \theta = 1$$

$$17.(r) = 3\sin\theta$$

18.
$$r = 1/(1 + 2 \sin \theta)$$

$$19.) r^2 = \sin 2\theta$$

20.
$$r^2 = 6$$

21–26 \Box Find a polar equation for the curve represented by the given Cartesian equation.

- 21. y = 5 y = 5
- **22.** y = 2x 1
- $(23.)x^2 + y^2 = 25$
- **24.** $x^2 = 4y$
- **25.** 2xy = 1
- **26.** $x^2 y^2 = 1$

27–28 \square For each of the described curves, decide if the curve would be more easily given by a polar equation or a Cartesian equation. Then write an equation for the curve.

- 27. (a) A line through the origin that makes an angle of $\pi/6$ with the positive x-axis
 - (b) A vertical line through the point (3, 3)
- 28. (a) A circle with radius 5 and center (2, 3)
 - (b) A circle centered at the origin with radius 4

29–32 \square Sketch the curve of the polar equation by first converting it to a Cartesian equation.

- $23. \quad r = -2\sin\theta$
- **30.** $r=2\sin\theta+2\cos\theta$
- $\mathbf{31.}) \ r = \csc \theta$
- **32.** $r = \tan \theta \sec \theta$

33-50 □ Sketch the curve with the given equation.

(33.) r = 5

- **34.** $\theta = 3\pi/4$
- **35.** $r = \sin \theta$
- $36, r = -3\cos\theta$
- $(37.) r = 2(1 \sin \theta)$
- $(38.) r = 1 3 \cos \theta$
- $\mathbf{39} \quad r = \theta, \quad \theta \geqslant 0$
- **40.** $r = \theta/2$, $-4\pi \le \theta \le 4\pi$
- **41.** $r = 1/\theta$
- **42.** $r = \sqrt{\theta}$
- $43. \quad r = \sin 2\theta$
- **44.** $r = 2 \cos 3\theta$
- $(45.) r = 2\cos 4\theta$
- $\mathbf{46.} \ \ r = \sin 5\theta$
- **47.** $r^2 = 4\cos 2\theta$
- $48. \quad r^2 = \sin 2\theta$
- **49.** $r = 2\cos(3\theta/2)$
- **50.** $r^2\theta = 1$

51. Show that the polar curve $r = 4 + 2 \sec \theta$ (called a **conchoid**) has the line x = 2 as a vertical asymptote by showing that $\lim_{r \to \pm \infty} x = 2$. Use this fact to help sketch the conchoid.

- **52.** Show that the curve $r = 2 \csc \theta$ (also a conchoid) has the line y = -1 as a horizontal asymptote by showing that $\lim_{r \to \pm \infty} y = -1$. Use this fact to help sketch the conchoid.
- **53.** Show that the curve $r = \sin \theta \tan \theta$ (called a **cissoid of Diocles**) has the line x = 1 as a vertical asymptote. Show also that the curve lies entirely within the vertical strip $0 \le x < 1$. Use these facts to help sketch the cissoid.
- **54.** Sketch the curve $(x^2 + y^2)^3 = 4x^2y^2$.
- **55.** (a) In Example 11 the graphs suggest that the limaçon $r=1+c\sin\theta$ has an inner loop when |c|>1. Prove that this is true, and find the values of θ that correspond to the inner loop.

(b) From Figure 18 it appears that the limaçon loses its dimple when $c = \frac{1}{2}$. Prove this.

Match the polar equations with the graphs labeled I–VI. Give reasons for your choices. (Don't use a graphing device.)

- (a) $r = \sin(\theta/2)$
- (b) $r = \sin(\theta/4)$
- (c) $r = \sec(3\theta)$
- (d) $r = \theta \sin \theta$
- (e) $r = 1 + 4\cos 5\theta$
- (f) $r = 1/\sqrt{\theta}$

57–62 \Box Find the slope of the tangent line to the given polar curve at the point specified by the value of θ .

- **57.** $r = 3\cos\theta$, $\theta = \pi/3$
- **58.** $r = \cos \theta + \sin \theta$, $\theta = \pi/4$
- **59.** $r = 1/\theta$, $\theta = \pi$
- **60.** $r = \ln \theta$, $\theta = e$
- **61.** $r = 1 + \cos \theta$, $\theta = \pi/6$
- **62.** $r = \sin 3\theta$, $\theta = \pi/6$

63–68 \square Find the points on the given curve where the tangent line is horizontal or vertical.

- **63.** $r = 3 \cos \theta$
- **64.** $r = \cos \theta + \sin \theta$
- **65.** $r = 1 + \cos \theta$
- **66.** $r = e^{\theta}$
- 67. $r = \cos 2\theta$
- **68.** $r^2 = \sin 2\theta$

.